Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Acta Pharmacol Sin ; 43(11): 2895-2904, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1805599

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the receptor of COVID-19 pathogen SARS-CoV-2, but the transcription factors (TFs) that regulate the expression of the gene encoding ACE2 (ACE2) have not been systematically dissected. In this study we evaluated TFs that control ACE2 expression, and screened for small molecule compounds that could modulate ACE2 expression to block SARS-CoV-2 from entry into lung epithelial cells. By searching the online datasets we found that 24 TFs might be ACE2 regulators with signal transducer and activator of transcription 3 (Stat3) as the most significant one. In human normal lung tissues, the expression of ACE2 was positively correlated with phosphorylated Stat3 (p-Stat3). We demonstrated that Stat3 bound ACE2 promoter, and controlled its expression in 16HBE cells stimulated with interleukin 6 (IL-6). To screen for medicinal compounds that could modulate ACE2 expression, we conducted luciferase assay using HLF cells transfected with ACE2 promoter-luciferase constructs. Among the 64 compounds tested, 6-O-angeloylplenolin (6-OAP), a sesquiterpene lactone in Chinese medicinal herb Centipeda minima (CM), represented the most potent ACE2 repressor. 6-OAP (2.5 µM) inhibited the interaction between Stat3 protein and ACE2 promoter, thus suppressed ACE2 transcription. 6-OAP (1.25-5 µM) and its parental medicinal herb CM (0.125%-0.5%) dose-dependently downregulated ACE2 in 16HBE and Beas-2B cells; similar results were observed in the lung tissues of mice following administration of 6-OAP or CM for one month. In addition, 6-OAP/CM dose-dependently reduced IL-6 production and downregulated chemokines including CXCL13 and CX3CL1 in 16HBE cells. Moreover, we found that 6-OAP/CM inhibited the entry of SARS-CoV-2 S protein pseudovirus into target cells. These results suggest that 6-OAP/CM are ACE2 inhibitors that may potentially protect lung epithelial cells from SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Mice , Humans , Animals , SARS-CoV-2 , Interleukin-6/metabolism , Lung/metabolism , Epithelial Cells
2.
Front Med ; 15(2): 252-263, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1053070

ABSTRACT

An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Adult , Animals , Epithelial Cells , Humans , Lung , Mice , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL